Machine Learning with Python – 4 Days Training Course


28 hours (usually 4 days including breaks)


Knowledge of Python programming language. Basic familiarity with statistics and linear algebra is recommended.


The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.

Course Outline

Introduction to Applied Machine Learning

  • Statistical learning vs. Machine learning
  • Iteration and evaluation
  • Bias-Variance trade-off

Supervised Learning and Unsupervised Learning

  • Machine Learning Languages, Types, and Examples
  • Supervised vs Unsupervised Learning

Supervised Learning

  • Decision Trees
  • Random Forests
  • Model Evaluation

Machine Learning with Python

  • Choice of libraries
  • Add-on tools


  • Linear regression
  • Generalizations and Nonlinearity
  • Exercises


  • Bayesian refresher
  • Naive Bayes
  • Logistic regression
  • K-Nearest neighbors
  • Exercises

Cross-validation and Resampling

  • Cross-validation approaches
  • Bootstrap
  • Exercises

Unsupervised Learning

  • K-means clustering
  • Examples
  • Challenges of unsupervised learning and beyond K-means

Neural networks

  • Layers and nodes
  • Python neural network libraries
  • Working with scikit-learn
  • Working with PyBrain
  • Deep Learning

Leave a Reply

Your email address will not be published. Required fields are marked *