Machine Learning Specialization

SKILLS YOU WILL GAIN

  • Data Clustering Algorithms
  • Machine Learning
  • Classification Algorithms
  • Decision Tree
  • Python Programming
  • Machine Learning Concepts
  • Deep Learning
  • Linear Regression
  • Ridge Regression
  • Lasso (Statistics)
  • Regression Analysis
  • Logistic Regression

About this Specialization

This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data.

Applied Learning Project

Learners will implement and apply predictive, classification, clustering, and information retrieval machine learning algorithms to real datasets throughout each course in the specialization. They will walk away with applied machine learning and Python programming experience.

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you’d like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You’ll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you’ll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you’ll earn a Certificate that you can share with prospective employers and your professional network.

Machine Learning Specialization

WHAT YOU WILL LEARN

  • Build ML models with NumPy & scikit-learn, build & train supervised models for prediction & binary classification tasks (linear, logistic regression)
  • Build & train a neural network with TensorFlow to perform multi-class classification, & build & use decision trees & tree ensemble methods
  • Apply best practices for ML development & use unsupervised learning techniques for unsupervised learning including clustering & anomaly detection
  • Build recommender systems with a collaborative filtering approach & a content-based deep learning method & build a deep reinforcement learning model

SKILLS YOU WILL GAIN

  • Decision Trees
  • Artificial Neural Network
  • Logistic Regression
  • Recommender Systems
  • Linear Regression
  • Regularization to Avoid Overfitting
  • Gradient Descent
  • Supervised Learning
  • Logistic Regression for Classification
  • Xgboost
  • Tensorflow
  • Tree Ensembles

About this Specialization

The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications. 

This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.

This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012. 

It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.)

By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.

Applied Learning Project

By the end of this Specialization, you will be ready to:

• Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn.

• Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression.

• Build and train a neural network with TensorFlow to perform multi-class classification.

• Apply best practices for machine learning development so that your models generalize to data and tasks in the real world.

• Build and use decision trees and tree ensemble methods, including random forests and boosted trees.

• Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection.

• Build recommender systems with a collaborative filtering approach and a content-based deep learning method.

• Build a deep reinforcement learning model.